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Abstract

Partially observable decentralized decision making in
robot teams is fundamentally different from decision making
in fully observable problems. Team members cannot simply
apply single-agent solution techniques in parallel. Instead,
we must turn to game theoretic frameworks to correctly
model the problem. While partially observable stochastic
games (POSGs) provide a solution model for decentral-
ized robot teams, this model quickly becomes intractable.
We propose an algorithm that approximates POSGs as a
series of smaller, related Bayesian games, using heuristics
such as QMDP to provide the future discounted value of ac-
tions. This algorithm trades off limited look-ahead in uncer-
tainty for computational feasibility, and results in policies
that are locally optimal with respect to the selected heuris-
tic. Empirical results are provided for both a simple prob-
lem for which the full POSG can also be constructed, as
well as more complex, robot-inspired, problems.

1. Introduction

Partially observable problems, those in which agents do
not have full access to the world state at every timestep,
are very common in robotics applications where robots
have limited and noisy sensors. While partially observable
Markov decision processes (POMDPs) have been success-
fully applied to single robot problems [11], this framework
does not generalize well to teams of decentralized robots.
All of the robots would have to maintain parallel POMDPs
representing the teams’ joint belief state, taking all other
robot observations as input. Not only does this algorithm
scale exponentially with the number of robots and obser-
vations, it requires unlimited bandwidth and instantaneous
communication between the robots. If no communication is
available to the team, this approach is no longer correct:
each robot will acquire different observations, leading to
different belief states that cannot be reconciled. Therefore,
we conjecture that robots with limited knowledge of their
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Figure 1. A representation of the relationship
between MDPs, POMDPs and POSGs.

teammates’ observations must reason about all possible be-
lief states that could be held by teammates and how that af-
fects their own action selection. This reasoning is tied to the
similarity in the relationship between partially observable
stochastic games (POSGs) and POMDPs to the relationship
between POMDPs and Markov decision processes (MDPs)
(see Figure 1). Much in the same way that a POMDP cannot
be solved by randomizing over solutions to different MDPs,
it is not sufficient to find a policy for a POSG by having each
robot solve parallel POMDPs with reasonable assumptions
about teammates’ experiences. Additional structure is nec-
essary to find solutions that correctly take into account dif-
ferent experiences.

We demonstrate this with a simple example. Consider a
team of paramedic robots in a large city. When a distress
signal, e, is received by emergency services, a radio call,
rc, is sent to the two members of the paramedic team. Each
robot independently receives that call with probability 0.9
and must decide whether or not to respond to the call. If both
robots respond to the emergency then it is dealt with (cost
of 0), but if only one robot responds then the incident is un-
resolved with a known cost c that is either 1.0 or 100.0 with
equal probability (low or high cost emergencies). Alterna-
tively, a robot that receives a radio call may relay that a call
to its teammate at a cost d of 1.0 and both robots then re-
spond to the emergency. What should a robot do when it re-
ceives a radio call?

If the two robots run POMDPs in parallel in order to
decide their policies then they have to make assumptions



about their teammates’ observation and policy in order to
make a decision. First, robot 1 can assume that robot 2 al-
ways receives and responds to the radio call when robot 1
receives that call. Robot 1 should therefore also always re-
spond to the call, resulting in a cost of 5.05 (0.9c). Alterna-
tively, robot 1 can assume robot 2 receives no information
and so it relays the radio call because otherwise it believes
that robot 2 will never respond to the emergency. This pol-
icy has a cost of 1.0. A third possibility is for each robot to
calculate the policy for both of these POMDPs and then ran-
domize over them in proportion to the likelihood that each
POMDP is valid. This, however, leads to a cost of 4.654.
The robots can do better by considering the distribution over
their teammate’s belief state directly in policy construction.
A policy of relaying a radio call when d < 0.9c and other-
wise just responding to the call has a cost of 0.55 which is
better than any of the POMDP variants.

The POSG is a game theoretic approach to multi-agent
decision making that implicitly models a distribution over
other agents’ belief states. It is, however, intractable to solve
large POSGs, and we propose that a viable alternative is for
agents to interleave planning and execution by building and
solving a smaller approximate game at every timestep to
generate actions. Our algorithm will use information com-
mon to the team (e.g. problem dynamics) to approximate
the policy of a POSG as a concatenation of a series of poli-
cies for smaller, related Bayesian games. In turn, each of
these Bayesian games will use heuristic functions to evalu-
ate the utility of future states in order to keep policy com-
putation tractable.

This transformation is similar to the classic one-step
lookahead strategy for fully-observable games [13]: the
agents perform full, game-theoretic reasoning about their
current knowledge and first action choice but then use a pre-
defined heuristic function to evaluate the quality of the re-
sulting outcomes. The resulting policies are always coordi-
nated; and, so long as the heuristic function is fairly accu-
rate, they perform well in practice. A similar approach, pro-
posed by Shi and Littman [14], is used to find near-optimal
solutions for a scaled down version of Texas Hold’Em.

2. Partially Observable Stochastic Games

Stochastic games, a generalization of both repeated
games and MDPs, provide a framework for decentralized
action selection [4]. POSGs are the extension of this frame-
work to handle uncertainty in world state. A POSG is de-
fined as a tuple (I, S, A, Z, T, R, O). I = {1, ..., n} is the
set of agents, S is the set of states and A and Z are respec-
tively the cross-product of the action and observation space
for each agent, i.e. A = A1 × · · · × An. T is the transi-
tion function, T : S × A → S, R is the reward function,
R : S × A → < and O defines the observation emis-
sion probabilities, O : S × A × Z → [0, 1]. At each
timestep of a POSG the agents simultaneously choose ac-

tions and receive a reward and observation. In this paper,
we limit ourselves to finite POSGs with common pay-
offs (each agent has an identical reward function R).

Agents choose their actions by solving the POSG to find
a policy σi for each agent that defines a probability distri-
bution over the actions it should take at each timestep. We
will use the Pareto-optimal Nash equilibrium as our solution
concept for POSGs with common payoffs. A Nash equilib-
rium of a game is a set of strategies (or policies) for each
agent in the game such that no one agent can improve its
performance by unilaterally changing its own strategy [4].
In a common payoff game, there will exist a Pareto-optimal
Nash equilibrium which is a set of best response strategies
that maximize the payoffs to all agents. Coordination proto-
cols [2] can be used to resolve ambiguity if multiple Pareto-
optimal Nash equilibria exist.

The paramedic problem presented in Section 1 can be
represented as a POSG with: I = {1, 2}, S = {e, e};
Ai = {respond,relay-call,do-nothing}; and Zi = {rc, rc}.
The reward function is defined as a cost c if both robots do
not respond to an emergency and a cost d of relaying a ra-
dio call. T and O can only be defined if the probability of
an emergency is given. If they were given, each robot could
then find a Pareto-optimal Nash equilibrium of the game.

There are several ways to represent a POSG in order to
find a Nash equilibrium. One useful way is as an extensive
form game [4] which is an augmented game tree. Extensive
form games can then be converted to the normal form [4]
(exponential in the size of the game tree) or the sequence
form [15, 6] (linear in the size of the game tree) and, in the-
ory, solved. While this is non-trivial in arbitrary n-player
games, to solve games with common payoff problems, we
can use an alternating-maximization algorithm to find lo-
cally optimal best response strategies. Holding the strate-
gies of all but one agent fixed, linear or dynamic program-
ming is used to find a best response strategy for the re-
maining agent. We optimize for each agent in turn until no
agent wishes to change its strategy. The resulting equilib-
rium point is a local optimum; so, we use random restarts to
explore the strategy space.

Extensive form game trees provide a theoretically sound
framework for representing and solving POSGs; however,
because the action and observation space are exponential in
the number of agents, for even the smallest problems these
trees rapidly become too large to solve. Instead, we turn to
more tractable representations that trade off global optimal-
ity for locally optimal solutions that can be found efficiently.

3. Bayesian Games

We will be approximating POSGs as a series of Bayesian
games. As it will be useful to have an understanding of
Bayesian games before describing our transformation, we
first present an overview of this game theory model.



Bayesian games model single state problems in which
each agent has private information about something rele-
vant to the decision making process [4]. While this private
information can range from knowledge about the number of
agents in the game to the action set of other agents, in gen-
eral it can be represented as uncertainty about the utility (or
payoffs) of the game. In other words, utility depends on this
private information.

For example, in the paramedic problem, the private in-
formation known by robot 1 is whether or not it has heard a
radio call. If both robots know whether or not each other re-
ceived the call, then the payoff of the game is known with
certainty and action selection is straightforward. But as this
is not the case, each robot has uncertainty over the payoff.

In the game theory literature, the private information
held by an agent is called its type, and it encapsulates all
non-commonly-known information to which the agent has
access. The set of possible types for an agent can be infi-
nite, but we limit ourselves to games with finite sets. Each
agent knows its own type with certainty but not those of
other agents; however, beliefs about the types of others are
given by a commonly held probability distribution over joint
types.

If I = {1, ..., n} is the set of agents, θi is a type of agent
i and Θi is the type space of agent i such that θi ∈ Θi, then
a type profile θ is θ = {θi, ..., θn} and the type profile space
is Θ = Θ1×· · ·×Θn. θ−i is used to represent the type of all
agents but i, with Θ−i defined similarly. A probability dis-
tribution, p ∈ ∆(Θ), over the type profile space Θ is used
to assign types to agents, and this probability distribution is
assumed to be commonly known. From this probability dis-
tribution, the marginal distribution over each agent’s type,
pi ∈ ∆(Θi), can be recovered as can the conditional proba-
bilities pi(θ−i|θi).

In the paramedic example Θi = {rc, rc}. The condi-
tional probability pi(rcj |rci) = 0.9 and pi(rcj |rci) = 0.1.
The description of the problem does not give enough in-
formation to assign a probability distribution over Θ =
{{rc, rc}, {rc, rc}, {rc, rc}, {rc, rc}}.

The utility, u, of an action ai to an agent is dependent
on the actions selected by all agents as well as on their type
profile and is defined as ui(ai, a−i, (θi, θ−i)). By definition,
an agent’s strategy must assign an action for every one of its
possible types even though it will only be assigned one type.
For example, although robot 1 in the paramedic example ei-
ther receives a call, rc, or does not, its strategy must still
define what it would do in either case. Let an agent’s strat-
egy be σi, and the probability distribution over actions it as-
signs for θi be given by p(ai|θi) = σi(θi).

Formally, a Bayesian game is a tuple (I, Θ, A, p, u)
where A = A1 × · · · × An, u = {ui, ..., un} and
I , Θ and p are as defined above. Given the com-
monly held prior p(Θ) over the distribution over agents’
types, each agent can calculate a Bayesian-Nash equilib-

rium policy. This is a set of best response strategies σ in
which each agent maximizes its expected utility condi-
tioned on its probability distribution over the other agents’
types. In this equilibria, each agent has a policy σi that,
given σ−i, maximizes the expected value u(σi, θi, σ−i) =∑

θ
−i∈Θ

−i
pi(θ−i|θi)ui(σi(θi), σ−i(θ−i), (θi, θ−i)).

Agents know σ−i because an equilibrium solution is de-
fined as σ, not just σi.

Bayesian-Nash equilibria are found using similar tech-
niques as for Nash equilbria in an extensive form game.
For a common-payoff Bayesian game where ui = uj∀i, j,
we can find a solution by applying the sequence form and
the alternating maximization algorithm as described in Sec-
tion 2.

4. Bayesian Game Approximation

We propose an algorithm for finding an approximate so-
lution to a POSG with common payoffs that transforms the
original problem into a sequence of smaller Bayesian games
that are computationally tractable. So long as each agent is
able to build and solve the same sequence of games, the
team can coordinate on action selection. Theoretically, our
algorithm will allow us to handle finite horizon problems
of indefinite length by interleaving planning and execution.
While we will formally describe our approximation in Al-
gorithms 1 and 2, we first present an informal overview of
the approach.

In Figure 2, we show a high-level diagram of our algo-
rithm. We approximate the entire POSG, shown by the outer
triangle, by constructing a smaller game at each timestep.
Each game models a subset of the possible experiences oc-
curring up to that point and then finds a one-step lookahead
policy for each agent contingent on that subset.

The question is now how to convert the POSG into these
smaller slices. First, in order to model a single time slice, it
is necessary to be able to represent each sub-path through
the tree up to that timestep as a single entity. A single sub-
path through the tree corresponds to a specific set of obser-
vation and action histories up to time t for all agents in the
team. If all agents know that a specific path has occurred,
then the problem becomes fully observable and the payoffs
of taking each joint action at time t are known with cer-
tainty. This is analogous to the utility in Bayesian games be-
ing conditioned on specific type profiles, and so we model
each smaller game as a Bayesian game. Each path in the
POSG up to time t is now represented as a specific type
profile, θt, with the the type of each agent, corresponding
to its own observation and actions, as θt

i . A single θt
i may

appear in multiple θt. For example, in the paramedic prob-
lem, robot 1’s type θ1 = rc appears in both θ = {rc, rc}
and θ = {rc, rc}.

Agents can now condition their policies on their individ-
ual observation and action histories; however, there are still
two pieces of the Bayesian game model left to define before
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Figure 2. A high level representation of our
algorithm for approximating POSGs.
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Figure 3. A diagram showing the parallel na-
ture of our algorithm. Shaded boxes indicate
steps that have the same outcome for all
agents.

these policies can be found. First, the Bayesian game model
requires agents to have a common prior over the type profile
space Θ. If we assume that all agents have common knowl-
edge of the starting conditions of the original POSG, i.e.
a probability distribution over possible starting states, then
our algorithm can iteratively find Θt+1 and p(Θt+1) using
information from Θt, p(Θt), A, T , Z, and O. Additionally,
because the solution of a game, σ, is a set of policies for all
agents, this means that each agent not only knows its own
next-step policy but also those of its teammates and this in-
formation can be used to update the type profile space. As
the set of all possible histories at time t can be quite large,
we discard all types with prior probability less than some
threshold and renormalize p(Θ).

Second, it is necessary to define a utility function u that
represents the payoff of actions conditioned on the type pro-
file space. Ideally, a utility function u should represent not
only the immediate value of a joint action but also its ex-
pected future value. In finite horizon MDPs and POMDPs,
these future values are found by backing up the value of
actions at the final timestep back through time. In our al-
gorithm, this would correspond to finding the solution to

the Bayesian game representing the final timestep T of the
problem, using that as the future value of the game at the
time T − 1, solving that Bayesian game and then back-
ing up that value through the tree. Unfortunately, this is in-
tractable; it requires us to do as much work as solving the
original POSG because we do not know a specific probabil-
ity distribution over ΘT until we have solved the game for
timesteps 0 through T − 1 and we cannot take advantage
of any pruning of Θt. Instead, we will perform our one-step
lookahead using a heuristic function for u, resulting in poli-
cies that are locally optimal with respect to that heuristic.
We will use heuristic functions that try to capture some no-
tion of future value while remaining tractable to calculate.

Now that the Bayesian game is fully defined, the
agents can iteratively build and solve these games for each
timestep. The t-th Bayesian game is converted into its corre-
sponding sequence form and a locally optimal Bayes-Nash
equilibrium found by using the alternating-maximization al-
gorithm. Once a set of best-response strategies is found
at time t, each agent i then matches its true history of ob-
servations and actions, hi, to one of the types in its type
space Θi and then selects an action based on its pol-
icy, σt

i , and type, θt
i .1

This Bayesian game approximation runs in parallel on all
agents in the team as shown in Figure 3. So long as a mech-
anism exists to ensure that each agent finds the same set of
best-response policies σt, then each agent will maintain the
same type profile space for the team as well as the same
probability distribution over that type space without having
to communicate. This ensures that the common prior as-
sumption is always met. Shading is used in Figure 3 to indi-
cate which steps of the algorithm should result in the same
output for each agent. Agents run the algorithm in lock-step
and a synchronized random-number generator is used to en-
sure all agents come up with the same set of best-response
policies using the alternating-maximization algorithm. Only
common knowledge arising from these policies or domain
specific information (e.g. agents always know the position
of their teammates) is used to update individual and joint
type spaces. This includes pruning of types due to low prob-
ability as pruning thresholds are common to the team. The
non-shaded boxes in Figure 3 indicate steps in which agents
only use their own local information to make a decision.
These steps involve matching an agent’s true observation
history, hi to a type modeled in the game, θt

i , and then exe-
cuting an action based on that type.

In practice there are two possible difficulties with con-
structing and solving our Bayesian game approximation of
the POSG. The first is that the type space Θ can be ex-
tremely large, and the second is that it can be difficult to

1 If the agent’s true history was pruned, we map the actual history to
the nearest non-pruned history using Hamming distance as our metric.
This minimization should be done in a more appropriate space such as
the belief space, and is future work.



Algorithm 1: PolicyConstructionAndExecution

I,Θ0, A, p(Θ0), Z, S, T,R, O
Output: r, st, σt,∀t

begin
hi ←− ∅, ∀i ∈ I
r←− 0
initializeState(s0)
for t← 0 to tmax do

for i ∈ I do (in parallel)
setRandSeed(rst)
σt, Θt+1, p(Θt+1)←
BayesianGame(I, Θt, A, p(Θt), Z, S, T,R, O, rst)

hi ← hi ∪ zt

i
∪ at−1

i

θt

i
← matchToType(hi,Θ

t

i
)

at

i
← σt

i
(θt

i
)

st+1 ← T (st, at

1
, ..., at

n)

r← r + R(st, at

1
, ..., at

n)

end

find a good heuristic for u.
We can exert some control over the size of the type space

by choosing the probability threshold for pruning unlikely
histories. The benefit of using such a large type space is that
we can guarantee that each agent has sufficient information
to independently construct the same set of histories Θt and
the same probability distribution over Θt at each timestep t.
In the future, we plan on investigating ways of sparsely pop-
ulating the type profile space or possibly recreating compa-
rable type profile spaces and probability distributions from
each agent’s own belief space.

Providing a good u that allows the Bayesian game to
find high-quality actions is more difficult because it depends
on the system designer’s domain knowledge. We have had
good results in some domains with a QMDP heuristic [7].
For this heuristic, u(a, θ) is the value of the joint action a

when executed in the belief state defined by θ assuming that
the problem becomes fully observable after one timestep.
This is equivalent to the QMDP value of that action in that
belief state. To calculate the QMDP values it is necessary to
find Q-values for a fully observable version of the problem.
This can be done by dynamic programming or Q-learning
with either exact or approximate Q-values depending upon
the nature and size of the problem.

The algorithms for the Bayesian game approximation are
shown in Algorithm 1 and 2. Algorithm 1 takes the param-
eters of the original POSG (the initial type profile space is
generated using the initial distribution over S) and builds
up a series of one-step policies, σt, as shown in Figure 3.
In parallel, each agent will: solve the Bayesian game for
timestep t to find σt; match its current history of experi-
ences to a specific type θt

i in its type profile; match this
type to an action as given by its policy σt

i ; and then exe-
cute that action. Algorithm 2 provides an implementation
of how to solve a Bayesian game given the dynamics of the
overall POSG and a specific type profile space and distribu-
tion over that space. It also propagates the type profile space
and its prior probability forward one timestep based on the

Algorithm 2: BayesianGame

Input: I,Θ, A, p(Θ), Z, S, T, R, O, randSeed

Output: σ, Θ′, p(Θ′)

begin
setSeed(randSeed)
for a ∈ A, θ ∈ Θ do

u(a, θ)← qmdpV alue(a, beliefState(θ))

σ ← findPolicies(I,Θ, A, p(Θ), u)
Θ′ ←− ∅
Θ′

i
←− ∅, ∀i ∈ I

for θ ∈ Θ,z ∈ Z, a ∈ A do
φ← θ ∪ z ∪ a
p(φ)← p(z, a|θ)p(θ)
if p(φ) > pruningThreshold then

θ′ ← φ
p(θ′)← p(φ)
Θ′ ← Θ′ ∪ θ′

Θ′

i
← Θi ∪ θ′

i
,∀i ∈ I

end

Algorithm 3: findPolicies

Input: I,Θ, A, p(Θ), u

Output: σi,∀i ∈ I

begin
for j ← 0 to maxNumRestarts do

πi ← random, ∀i ∈ I
while !converged(π) do

for i ∈ I do
πi ← argmax[

∑
θ∈Θ

p(θ) ∗

u([πi(θi), π−i(θ−i)], θ)]

if bestSolution then
σi ← πi, ∀i ∈ I

end

the solution to that Bayesian game.
Additional variables used in these algorithms are: r is

the reward to the team, rs is a random seed, πi is a generic
strategy, φ is a generic type, and superscripts refer to the
timestep under consideration. The function beliefState(θ)
returns the belief state over S given by the history of ob-
servations and actions made by all agents as defined by θ.
In Algorithm 2 we specify a QMDP heuristic for calculat-
ing utility, but any other heuristic could be substituted.

For alternating-maximization, shown in its dynamic pro-
gramming form in Algorithm 3, random restarts are used to
move the solution out of local maxima. In order to ensure
that each agent finds the same set of policies, we synchro-
nize the random number generation of each agent.

5. Experimental Results

5.1. Lady and The Tiger

The Lady and The Tiger problem is a multi-agent version
of the classic tiger problem [3] created by Nair et al. [8]. In
this two state, finite horizon problem, two agents are faced
with the problem of opening one of two doors, one of which
has a tiger behind it and the other a treasure. Whenever a
door is opened, the state is reset and the game continues un-



Time Full POSG Bayesian Game Approx. selfish
Horizon Time(ms) Exp. Reward Time(ms) Avg. Reward Avg. Reward

3 50 5.19 1 5.18± 0.15 5.14 ± 0.15
4 1000 4.80 5 4.77± 0.07 -28.74 ± 0.46
5 25000 7.02 20 7.10± 0.12 -6.59 ± 0.34
6 900000 10.38 50 10.28 ± 0.21 -42.59 ± 0.56
7 — — 200 10.00 ± 0.17 -19.86 ± 0.46
8 — — 700 12.25 ± 0.19 -56.93 ± 0.65
9 — — 3500 11.86 ± 0.14 -34.71 ± 0.56
10 — — 9000 15.07 ± 0.23 -70.85 ± 0.73

Table 1. Computational and performance re-
sults for Lady and the Tiger, |S| = 2. Rewards
are averaged over 10000 trials with 95% con-
fidence intervals shown.

til the fixed time has passed. The crux of the Lady and the
Tiger is that neither agent can see the actions or observa-
tions made by their teammate, nor can they observe the re-
ward signal and thereby deduce them. It is, however, neces-
sary for an agent to reason about this information. See Nair
et al. [8] for S, A, Z, T, R, and O.

While small, this problem allows us to compare the poli-
cies achieved by building the full extensive form game ver-
sion of the POSG to those from our Bayesian game ap-
proximation. It also shows how even a very small POSG
quickly becomes intractable. Table 1 compares performance
and computational time for this problem with various time
horizons. The full POSG version of the problem was solved
using the dynamic programming version of alternating-
maximization with 20 random restarts (increasing the num-
ber of restarts did not result in higher valued policies).

For the Bayesian game approximation, each agent’s type
at time t consists of its entire observation and action history
up to that point. Types with probability less than 0.000005
were pruned. If an agent’s true history is pruned, then it is
assigned the closest matched type in Θt

i for action selection
(using Hamming distance). The heuristic used for the util-
ity of actions was based upon the value of policies found for
shorter time horizons using the Bayesian game approxima-
tion. Our algorithm was able to find comparable policies to
the full POSG in a much shorter time.

Finally, to reinforce the importance of using game the-
ory, results are included for a selfish policy in which
agents solve parallel POMDP versions of the problem us-
ing Cassandra’s publicly available pomdp-solve.2 In these
POMDPs, each agent assumes that its teammate never re-
ceives observations that would lead it to independently
open a door.

5.2. Robotic Team Tag

This example is a two-robot version of Pineau et al.’s Tag
problem [10]. In Team Tag, two robots are trying to herd and

2 http://www.cs.brown.edu/research/ai/pomdp/code/index.html
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Figure 4. The discrete environment used for
Team Tag. A star indicates the goal cell.

then capture an opponent that moves with a known stochas-
tic policy in the discrete environment depicted in Figure 4.
Once the opponent is forced into the goal cell, the two
robots must coordinate on a tag action in order to receive
a reward and end the problem.

The state space for this problem is the cross-product of
the two robot positions roboti = {so, ..., s28} and the oppo-
nent position opponent = {so, ..., s28, stagged}. All three
agents start in independently selected random positions and
the game is over when opponent = stagged. Each robot
has five actions, Ai = {North, South, East, West, Tag}.
A shared reward of -1 per robot is imposed for each mo-
tion action, while the Tag action results in a +10 reward if
roboto = robot1 = opponent = s28 and if both robots se-
lect Tag. Otherwise, the Tag action results in a reward of
-10. The positions of the two robots are fully observable
and motion actions have deterministic effects. The position
of the opponent is completely unobservable unless the op-
ponent is in the same cell as a robot and robots cannot share
observations. The opponent selects actions with full knowl-
edge of the positions of the robots and has a stochastic pol-
icy that is biased toward maximizing its distance to the clos-
est robot.

A fully observable policy was calculated for a team that
could always observe the opponent using dynamic program-
ming for an infinite horizon version of the problem with a
discount factor of 0.95. The Q-values generated for this pol-
icy were then used as a QMDP heuristic for calculating the
utility of the Bayesian game approximation. Each robot’s
type is its observation history with types having probabil-
ity less than 0.00025 pruned.

Two common heuristics for partially observable prob-
lems were also implemented. In these two heuristics, each
robot maintains an individual belief state based only upon
its own observations (as there is no communication) and
uses that belief state to make action selections. In the Most
Likely State (MLS) heuristic, the robot selects the most
likely opponent state and then applies its half of the best
joint action for that state as given by the fully observable
policy. In the QMDP heuristic, the robot implements its half
of the joint action that maximizes its expected reward given
its current belief state. MLS performs better than QMDP as
it does not exhibit an oscillation in action selection. As can
be seen in Table 2, the Bayesian game approximation per-



Algorithm Avg. Discounted Value Avg. Timesteps %Success
With Full Observability of Teammate’s Position
Fully Observable -8.08 ± 0.11 14.39 ± 0.11 100%
Most Likely State -23.44 ± 0.23 49.43 ± 0.65 78.10%

QMDP -29.83 ± 0.23 63.82 ± 0.7 56.61%
Bayesian Approx. -21.23 ± 0.76 43.84 ± 1.97 83.30%

Without Fully Observability of Teammate’s Position
Most Likely State -29.10 ± 0.25 67.31 ± 0.73 46.12%

QMDP -48.35 ± 1.18 89.02 ± 0.52 16.12%
Bayesian Approx. -22.21 ± 0.80 43.53 ± 1.00 83.20%

Table 2. Results for Team Tag, |S| = 25230.
Results are averaged over 1000 trials for
the Bayesian approximation and 10000 tri-
als for the others, with 95% confidence inter-
vals shown. Success rate is the percentage
of trials in which the opponent was captured
within 100 timesteps.

forms better than both MLS and QMDP .
The Team Tag problem was then modified by remov-

ing full observability of both robots’ positions. While each
robot maintains full observability of its own position, it can
only see its teammate if they are located in the same cell.
The MLS and QMDP heuristics maintain an estimate of the
teammate’s position by assuming that the teammate com-
pletes the other half of what the robot determines to be
the best joint action at each timestep (the only informa-
tion to which it has access). This estimate can only be cor-
rected if the teammate is observed. In contrast, the Bayesian
game approximation maintains a type space for each robot
that includes its position as well as its observation at each
timestep. The probability of such a type can be updated
both by using the policies computed by the algorithm and
through a mutual observation (or lack thereof).

This modification really shows the strength of reason-
ing about the actions and experiences of others. With an op-
ponent that tries to maximize its distance from the team, a
good strategy is for the team to go down different branches
of the main corridor and then herd the opponent toward the
goal state. With MLS and QMDP , the robots frequently go
down the same branch because they both incorrectly make
the assumption that their teammate will go down the other
side. With the Bayesian game approximation, however, the
robots were able to better track the true position of their
teammate. The performance of these approaches under this
modification are shown in Table 2, and it can be seen that
while the Bayesian approximation performs comparably to
how it did with full observability of both robot positions,
the other two algorithms do not.

5.3. Robotic Tag 2

In order to test the Bayesian game approximation as a
real-time controller for robots, we implemented a modified
version of Team Tag in a portion of Stanford University’s

Figure 5. The robot team running in simula-
tion with no opponent present. Robot paths
and current goals (light coloured circles) are
shown.

Algorithm Avg. Discounted Value Avg. Timesteps %Success
Fully Observable 2.70± 0.09 5.38 ± 0.06 100%
Most Likely State -7.04± 0.21 16.47 ± 0.28 99.96%

QMDP -9.54± 0.27 25.29 ± 0.54 95.37%
Bayesian Approx. -6.01± 0.21 15.20 ± 0.27 99.94%

Table 3. Results for Tag 2, |S| = 18252. Results
are averaged over 10000 trials with 95% con-
fidence intervals shown.

Gates Hall as shown in Figure 5. The parameters of this
problem are similar to those of Team Tag with full teammate
observability except that: the opponent moves with Brown-
ian motion; the opponent can be captured in any state; and
only one member of the team is required to tag the oppo-
nent. As with Team Tag, the utility for the problem was
calculated by solving the underlying fully-observable game
in a grid-world. MLS, QMDP and the Bayesian game ap-
proximation were then applied to this grid-world to gen-
erate the performance statistics shown in Table 3. Once
again, the Bayesian approximation outperforms both MLS
and QMDP .

The grid-world was also mapped to the real Gates Hall
and two Pioneer-class robots using the Carmen software
package for low-level control.3 In this mapping, observa-
tions and actions remain discrete and there is an additional
layer that converts from the continuous world to the grid-
world and back again. Localized positions of the robots are
used to calculate their specific grid-cell positions, with each
cell being roughly 1.0m×3.5m. Robots navigate by convert-
ing the actions selected by the Bayesian game approxima-
tion into goal locations. For runs in the real environment,
no opponent was used and the robots were always given a
null observation. (As a result, the robots continued to hunt
for an opponent until stopped by a human operator.) Fig-
ure 5 shows a set of paths taken by robots in a simulation
of this environment as they attempt to capture and tag the
(non-existent) opponent. Runs on the physical robots gen-
erated similar paths for the same initial conditions.

3 http://www.cs.cmu.edu/˜carmen



6. Discussion

We have presented an algorithm that deals with the in-
tractability of POSGs by transforming them into a series
of smaller Bayesian games. Each of these games can then
be solved to find one-step policies that, together, approx-
imate the globally optimal solution of the original POSG.
The Bayesian games are kept efficient through pruning of
low-probability histories and heuristics to calculate the util-
ity of actions. This results in policies for the POSG that are
locally optimal with respect to the heuristic used.

There are several frameworks that have been proposed
to generalize POMDPs to distributed, multi-agent systems.
DEC-POMDP [1], a model of decentralized partially ob-
servable Markov decision processes, and MTDP [12], a
Markov team decision problem, are both examples of these
frameworks. They formalize the requirements of an optimal
policy; however, as shown by Bernstein et al., solving de-
centralized POMDPs is NEXP-complete [1]. I-POMDP [5]
also generalizes POMDPs but uses Bayesian games and de-
cision theory to augment the state space to include mod-
els of other agents’ behaviour. There is, however, little to
suggest that these I-POMDPs can then be solved optimally.
These results reinforce our belief that locally optimal poli-
cies that are computationally efficient to generate are essen-
tial to the success of applying the POSG framework to the
real world.

Algorithms that attempt to find locally optimal solutions
include POIPSG [9] which is a model of partially observ-
able identical payoff stochastic games in which gradient de-
scent search is used to find locally optimal policies from a
limited set of policies. Rather than limit policy space, Xuan
et. al. [16] deal with decentralized POMDPs by restricting
the type of partial observability in their system. Each agent
receives only local information about its position and so
agents only ever have complementary observations. The is-
sue in this system then becomes the determination of when
global information is necessary to make progress toward the
goal, rather than how to resolve conflicts in beliefs or to aug-
ment one’s own belief about the global state.

The dynamic programming version of the alternating-
maximization algorithm we use for finding solutions for ex-
tensive form games is very similar to the work done by Nair
et. al. but with a difference in policy representation [8].
This alternating-maximization algorithm, however, is just
one subroutine in our larger Bayesian game approximation;
our approximation allows us to find solutions to much larger
problems than any exact algorithm could handle.

The Bayesian game approximation for finding solutions
to POSGs has two main areas for future work. First, because
the performance of the approximation is limited by the qual-
ity of the heuristic used for the utility function, we plan to
investigate heuristics, such as policy values of centralized
POMDPs, that would allow our algorithm to consider the

effects of uncertainty beyond the immediate action selec-
tion. The second area is in improving the efficiency of the
type profile space coverage and representation.
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