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Abstract. This article present results for building accurate 3­D maps of urban environments

with a mobile Segway RMP. The goal of this project is to use robotic systems to rapidly acquire

3­D maps, which seamlessly integrate indoor and outdoor structures. Our approach is based

on an information­solution of the SLAM problem, which enables us to seamlessly integrate

GPS, IMU, and scan data. 3­D models acquired by the robot are analyzed for navigability

using a multi­grid approach, and visualized using a level set technique. Results are presented

for a number of environments, some of which combine indoor and outdoor terrain.

1 Introduction

In recent years, there has been a number of projects seeking to map physical en­

vironments. Classical work includes mapping from the air [11], the ground [6,23],

indoors [5,10], outdoors [22], and even under water [27] and in the subterranean

world [3]. The development of techniques for the acquisition of such maps has

been driven by a number of desires. They include photo­realistic rendering [1,2],

surveillance [26], measurement [3], and robot guidance [27]. Not surprisingly, the

best work in this area has emerged from a number of different scientific fields, such

as photogrammetry, computer vision, computer graphics [12,20], and robotics [23].

This paper describes a robotic system designed to acquire such maps. Urban

terrain possesses a number of characteristic features: It combines large open places

with narrowly confined spaces, such as building interiors. GPS is usually inaccurate

due to multi­path effects, and places inside building are GPS­denied. From a SLAM

(simultaneous localization and mapping) perspective, maps of the size targeted by

our research involve 10
7 or more features; gathered over 10

6 poses. Urban terrain

is non­flat, hence the robot has to be localized in 6­D. The overall SLAM problem,

thus is orders of magnitude more complex than prior work. In fact, the vast majority

of SLAM algorithms has only been applied to 2­D models with 3­D poses, to keep

the data sets manageable small. Even those that perform 3­D mapping do so via

2­D SLAM [8], with the exception of [19] which offers no provision for closing

cycles [7,4,24]. Further, past work has not provided effective means to incorporate

occasional GPS measurements.
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Fig. 1. The Segbot, a robot based on the Segway RMP platform and developed through the

DARPA MARS program.

2 SLAM in Urban Environments

A key problem in building large­scale urban maps pertains to the ability to integrate

information from multiple information sources, specifically GPS (global positioning

system), IMU (the inertial measurement unit), odometry, and the LIDAR sensor(a

laser­light detection and ranging sensor). This mapping problem is a version of

the SLAM problem, short for simultaneous localization and mapping. The SLAM

problem is characterized by a necessity to estimate the map of an environment while

simultaneously localize the sensor relative to the map. Outdoors, GPS provided

absolute position labels; indoors, it presently does not.

Our approach builds on prior work on SLAM by Lu and Milios, who proposed

Kalman filter­based approach that represents SLAM posteriors through collections of

local constraints between nearby poses [13] (see also [7]). However, this algorithm

has been reported to suffer from numerical instabilities even for small data sets,

and it also does not accommodate GPS measurements. Also related is recent work

in [4,18,25], who propose variants of the information filter for solving the SLAM

problem. These algorithms are approximate, and they also fail to integrate occasional

GPS data when available. However, both families of approaches are related in that

they represent SLAM posteriors through local constraints—which is in stark contrast

to the classical SLAM solution, the EKF [21], which maintains a full covariance

between any two features.

Specifically, our approach represents the SLAM posterior as an undirected

Markov network, where nodes correspond to poses, GPS measurements, and range

measurements. The network possesses three types of pairwise node potentials: There

are potentials between range measurements and the corresponding pose, at which

the measurement was required; there are potentials between subsequent poses, gov­
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Fig. 2. Data acquisition through a two­directional scanning laser (the blue stripe indicates

a vertical scan). The coloring indicates the result of terrain analysis: The ground surface is

colored in green, obstacles are red, and structure above the robot’s reach are shown in white.

erned by the IMU measurements. And finally, there are absolute location potentials

for poses at which GPS data was received. All of these potentials are nonlinear­

quadratic; they are composed of a deterministic non­linear projective function (e.g.,

the robot motion model; the measurement model) with a quadratic penalty function

that measures deviations from this non­linear projection. This representation gener­

alizes past work on SLAM, most notably [13], in that the resulting sum of potentials

can be thought of as a non­normalized log­likelihood function. However, represent­

ing them as potentials avoids numerical instabilities of the covariance representation

in [13].

The map is now retrieved by finding the minimum over all state variables in this

graph. For this, it is essential to identify measurements that correspond; those are

identified using scan matching. With a laser pointed forward on a panning platform,

our scan matching algorithm relates scans to a large history window. Further, we

use efficient grid­based caching mechanism to identify nearest neighbors in real­

time. Once corresponding measurements are found, the resulting Bayes network is

collapsed to remove double occurrences of joint landmarks (which is an approxi­

mate operation; it would be exact if all potentials were linear­quadratic). Next, all

landmarks are integrated out by further shrinking the remaining Bayes network. We

arrive at a skeleton network that only contains the path of the robot with potentials

added between any two poses at which the same feature was observed. This Bayesian

network is then “solved”—meaning we find the maximum likelihood solution in the

corresponding probability function—through an efficient conjugate gradient search

algorithm.

The advantage of this approach is threefold: It is free of numerical instabilities;

it can represent extremely high­dimensional Gaussian SLAM posteriors in 10
8­

dimensional space; and the resulting optimization is efficient: Generating an actual

map takes in the order of seconds on a low­end workstation. The process performs

the mapping in 6­D [19]. The curvature of seemingly urban flat terrain tends to be

sufficiently non­flat that SLAM approaches that assume the robot operates on a plane
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Fig. 3. Indoor mapping. Left: just based on the IMU and SLAM. Right: factoring in GPS data

acquired outdoors. This experiment highlights the utility of our hybrid SLAM algorithm that

factors in GPS measurements as available.
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Fig. 4. Top: A map of Stanford University’s main campus, whose diameter is approximately

600 meters. Bottom: 3­D map of the Gates Computer Science building and the surrounding

terrain.
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Fig. 5. Visualization of the NASA Ames ARC Disaster Assistance and Rescue Team training

site in Moffett Field, CA. This site consist of a partially collapsed building with two large

observation platforms. Top: Model. Bottom: Edges.

are simply inapplicable. The 6­D optimization also accommodates the fact that the

Segway’s pitch is continuously adjusted so as to not lose balance.

3 Navigation

A key component of our approach pertains to the “understanding” of the terrain and

surrounding urban structures, to the extent necessary for safe robot navigation. Since

our robot sometimes navigates autonomously, our approach also analyzes terrain for

possible obstacles, using an algorithm that generalizes related work in [9,14].

Our basic approach analyzes scans for three type of obstacles: (1) terrain that

is too steep or too rugged for save traversal such as curbs; (2) obstacles protruding

into the workspace of the robot such as overhangs, and (3) locations that lacks the

necessary physical support for the robot such as wholes in the ground. The first

two obstacle types are “positive obstacles,” meaning that they can be detected by

analyzing scan measurement points. The third type is commonly called “negative

obstacle,” to indicate that such obstacles are only detectable by the absence of range

measurements.
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Our approach identifies positive obstacles by analyzing individual ground scan

lines. Each scan line contains a sequence of measurement points. By calculating

the derivative of these points in workspace coordinates, our robot can assess the

steepness of individual ground patches. In this way, it can avoid obstacles such as

steep ramps and upwards staircases. Objects protruding into the robot’s workspace

are identified by searching up to a limited height for measurement points relative

to the ground area. By limiting the search height, our vehicle can navigate indoor

environments and through overhangs.

Negative obstacles are detected by lack of supporting ground plane. However,

this analysis is somewhat non­trivial, due to the sparseness of measurement points

at longer ranges. To perform this analysis, most existing techniques partition the

workspace into a grid, similar to the well­known occupancy grid map algorithm [17].

For each grid cell, sensor measurements are integrated using Bayes rule to gradually

increase coverage, while at the same time diminishing the effect of sensor noise.

Real­world terrain sensors have limited measurement resolution. For example,

our laser range finders can only measure ranges with 0.5
◦ accuracy; similar limita­

tions exist for stereo camera systems and sonar sensors. Limited resolution causes

two problems with standard evidence grid algorithms: First, the limited resolution

may make it impossible to detect small obstacles at a distance. Obstacles like curbs

or low­hanging wires can usually only be detected at close range. Second, limited

sensor resolution makes it difficult to systematically find navigable terrain at a dis­

tance. As a result, a motion planner is either forced to make optimistic assumptions

about the nature of terrain at a distance (with the obvious expense of having to

replan when negative obstacles are encountered), or must remain confined to nearby

regions that have been completely imaged.

Our approach relies on a multi­grid representation, which combines maps with

different resolutions. The map chosen for each measurement depends on the overall

range: the further away a measurement point, the coarser the corresponding grid.

The advantage of using such a multi­resolution grid is two­fold. First, the coverage

in areas further away is increased, without compromising the spatial distribution

of the overall map. This leads to improved paths of the robot during autonomous

motion. Second, and possibly more importantly, evidence of non­traversibility ac­

quired at short range cannot be overridden by evidence of traversibility acquired

at longer range. This effect is the result of using gradients for traversibility anal­

ysis: such gradients are necessarily less accurate at a distance, where the density

of measurements is reduced. As a result, small obstacles such as curbs are usually

not detected at far range. A standard occupancy grid technique would consequently

fail to update a cell as non­traversable while the obstacle is still far away. Results

in [16] suggest that the time at which small obstacles are detectable at short range

may be too short for overriding the evidence acquired at longer ranges; as a result,

the robot may run into such obstacles. Our multi­resolution approach overcomes this

by maintaining range­specific maps. Small obstacles such as curbs do not show up

in the coarse, long­range map, but they do show up in the fine­grained short­range
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Fig. 6. Multi­resolution pyramid model of the robot’s surroundings. The majority of holes in

the map are filled in. The terrain map close to the robot is very high resolution, while the area

far from the robot is very coarse.

map. When combining maps for assessing the navigability of terrain, preference is

given to shorter range maps; however, all maps participate in motion planning.

4 Visualization

To visualize the resulting maps, we use a well­known level set technique. Technically,

the data acquired by our robot consists of point clouds. Such point clouds might

provide an impression of the surface structure of a building, but they lack an explicit

surface description.

Our approach....

5 Results

We conducted a number of experiments, all with the vehicle shown in Figure 1. In

particular, we have mapped a number of urban sites, including NASA’s Search and
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Rescue Facility DART and a large fraction of Stanford’s main campus; snapshots of

these experiments will be discussed below.

Our experiments either involve the collection of a single large dataset, or a

number of datasets. The latter has become necessary since for the environments of

the size studied here, the robot possesses insufficient battery capacity to collect all

data within a single run. In most experiments, the robot is controlled manually. This

is necessary because the urban environments are usually populated with moving

objects, such as cars, which would otherwise run danger of colliding with our robot.

We have, on several occasions, used our navigation package Carmen [15] to drive

the robot autonomously, validating the terrain analysis techniques discussed above.

Our research has led to a number of results. First and foremost, a primary finding

is that with our representation, maps with more than 10
8 variables can be computed

quickly, even under multiple loop­closure constraints. The time for thinning the

network into its skeleton tends to take linear time in the number of robot poses,

which is the same order as the time required for data collection. We find that scan

matching is easily achieved in real­time, as the robot moves, using a portable laptop

computer. This is a long­known result for horizontally mounted laser range finders,

but it is reassuring that the same applies to the more difficult scan matching problem

involving a vertically panning scanner. More importantly, the relaxation of the pose

potentials takes in the order of 30 seconds even for the largest data set used in our

research, of an area 600m by 800m in size, and with a dozen cycles. This suggests the

appropriateness of our representation an algorithms for large­scale urban mapping.

The second and possibly more important result pertains to the utility of GPS data

for indoor maps. We find that indoor maps become more accurate when some of the

data is collected outdoors, where GPS measurements are available. Further below,

we will discuss an experimental snapshot that documents this result..

Finally, when in autonomous mode, we find that our terrain analysis techniques

provide effective navigation at speeds of up to one meter per second. The vehicle

navigates collision­free and successfully avoids negative obstacles, but sometimes

fails to detect fast moving obstacles fast enough to avoid a collision. The latter

is because of the panning motion of the sensor, which requires approximately 2

seconds for a full sweep. We also find that curbs are reliably identified through our

multi­resolution approach, where a single­resolution approach using occupancy­grid

style update techniques fail.

Experimental snapshots can be found in Figures 3 through 5. Figures 4 and 5

show some of the maps acquired by our system. All maps are substantially larger than

previously software could handle, all are constructed with some GPS information.

The map shown on the left in Figure 4 corresponds to Stanford’s main campus; the

one on the right is an indoor­outdoor map of the building that houses the computer

science department.

The key result of improved indoor maps through combining indoor and outdoor

mapping is illustrated in Figure 3. Here we show a 2­D slice of the 3­D map using

SLAM under two different conditions: In the map on the left, the indoor map is

constructed independently of the outdoor map, whereas the right map is constructed
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jointly. As explained, the joint construction lets GPS information affect the building

interior through the sequence of potentials liking the outdoor to the indoor. As this

figure suggests, the joint indoor­outdoor map is significantly more accurate; in fact,

the building possesses a right angle at its center, which well approximated.

Figure 6 shows a snapshot of our multi­resolution grid map for finding negative

obstacles. The resolution depends on the distance to the robot. This specific snapshot

shows several curbs, some larger ones far away, and one near the robot that a flat

approach would have failed to identify.
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